

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Inflation-era High Energy Physics and neutrino masses via CMB polarization measurements with the South Pole Telescope

John Carlstrom*, Clarence Chang*, Aaron Datesman, Valentyn Novosad, John Pearson, Gensheng Wang, Volodymyr Yefremenko (Argonne)

Critical component: Argonne TES Detector Development Project featuring HEP, MSD, and CNM.

COLLABORATORS:

South Pole Telescope collaboration including key people at: Kavli Institute for Cosmological Physics at the University of Chicago, U.C.Berkeley & LBL, U.Colorado, Case Western & McGill University

*joint Argonne/U.Chicago

HEP provides enabling technology for frontier research - excellent synergy.

TECHNOLOGY

- Superconducting Transition-Edge Sensor (TES) Detectors
- Argonne TES Development Project
- Seeded by LDRD (ANL)

PLATFORM

- South Pole Telescope. Cutting edge instrument & strong collaboration
- PI: John Carlstrom

CMB measurements have been an Incredible success!

Line is fit to a flat Λ CDM cosmology model with just six parameters: $\Omega_b h^2$, $\Omega_m h^2$, A_s , τ , n_s , Ω_{Λ}

What's next? "B-mode" CMB polarization to probe Inflation.

The data from SPTpol will constrain the masses of the neutrinos and set (or limit) the energy scale of Inflation.

Komatsu et al., arXiv:1001:4538; Larson et al., arXiv:1001.4635

Spectra generated with WMAP7 parameters using CAMB, Lewis and Challinor

CMB measurements should be able to achieve $\sigma(\sum m_v)$ = 0.05eV, comparable to Δm measured by neutrino oscillations.

Closing in on inflation

see Brown et al., arXiv:0906.1003 & Chiang et al., arXiv:0906.1181

Need more sensitivity! Need scalable, background limited, detectors.

Bolometry: A Broadly Applicable, Ultra-Sensitive Thermal Detection

LDRD developed Argonne SPTpol TES Detector

Mo/Au proximity effect 500mK T_C bilayer TES

